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Structure and energetics of the Src Src Homology 2 (SH2) domain binding with the recognition
phosphopeptide pYEEI and its mutants are studied by a hierarchical computational approach.
The proposed structure prediction strategy includes equilibrium sampling of the peptide
conformational space by simulated tempering dynamics with the simplified, knowledge-based
energy function, followed by structural clustering of the resulting conformations and binding
free energy evaluation of a single representative from each cluster, a cluster center. This protocol
is robust in rapid screening of low-energy conformations and recovers the crystal structure of
the pYEEI peptide. Thermodynamics of the peptide-SH2 domain binding is analyzed by
computing the average energy contributions over conformations from the clusters, structurally
similar to the predicted peptide bound structure. Using this approach, the binding thermody-
namics for a panel of studied peptides is predicted in a better agreement with the experiment
than previously suggested models. However, the overall correlation between computed and
experimental binding affinity remains rather modest. The results of this study show that small
differences in binding free energies between the Ala and Gly mutants of the pYEEI peptide
are considerably more difficult to predict than the structure of the bound peptides, indicating
that accurate computational prediction of binding affinities still remains a major methodological
and technical challenge.

Introduction

The phosphorylation of protein residues is often the
first detectable response to an external stimulus, im-
plicating protein tyrosine kinases in mediating a variety
of intracellular events, including cell prolifiration, me-
tabolism, and immune response.1 These proteins selec-
tively bind their targets and initiate a cascade of
signaling events through modular domains that control
protein-protein interactions.2 The Src Homology 2
(SH2) domain of the protein tyrosine kinases Src3,4 plays
an important role in signaling cascades by recognizing
phosphotyrosine (pTyr) sequences and binding tightly
and selectively to substrate proteins. The importance
of the Src kinases as a promising target for drug
discovery has been recognized since elevated levels of
kinase activity have been implicated with breast can-
cer,5 colon cancer,6 and osteoporosis.7 Structure and
energetics of peptide-SH2 domain binding have been
extensively studied in recent years to understand
structure-function relationships and the molecular
recognition mechanism.8-18 The molecular basis of
sequence-specific recognition has been analyzed using
three-dimensional (3D) structures of SH2 domains com-
plexed with nonspecific and specific phosphopeptides.8-11

The crystal structures of the tyrosine kinases Src and
Lck SH2 domains bound to the phosphotyrosyl peptide
containing the recognition pYEEI motif have suggested
a mechanism of sequence-specific binding that re-
sembles a “two-pronged plug” engaging a “two-holed
socket”.8,9 The recognition pYEEI peptide binds in an

extended conformation with the Ile residue inserted into
a hydrophobic pocket, providing an important determi-
nant of specificity and high binding affinity, and the two
Glu residues interacting with the protein side chain
residues through water molecules.

Calorimetry studies of the Ala and Gly mutants of
pYEEI have shown that the differences in the SH2
domain binding affinity between consensus high-affinity
peptide and nonconsensus low-affinity peptides are less
than 100-fold.12-18 Mutations in the consensus pYEEI
binding sequences cause only modest, less than 10-fold
reductions in affinity, whereas a much larger 10 000-
fold decline in binding affinity is observed when the
pTyr residue is perturbed.15-18 It has been demonstrated
that more than half of the binding free energy of the
pYEEI peptide is derived from the phosphate in the
pTyr. In contrast, mutations of the residues at +1, +2,
or +3 positions C-terminal to the pTyr cause only minor
changes in binding affinity.15-18 In general, peptide-
SH2 domain binding displays the pattern of interac-
tions, where the mutational effects of energetically
important residues from binding partners are comple-
mentary.19 Indeed, most of the binding free energy is
delivered by hot-spot residues, such as Arg âB5 in the
pTyr binding pocket and Tyr âD5 in the specificity
region. Mutation of a single residue Arg âB5, in the pTyr
binding pocket results in a 200-fold loss in binding
affinity, and a nearly 30-fold loss of affinity is observed
when Tyr âD5 is mutated to Ile.14-17

The exhaustive thermodynamic mapping of the Src
SH2 domain-peptides interface, carried out with the
aid of high-sensitivity isothermal calorimetry, has pro-
vided the accurate and comprehensive experimental
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estimates of the binding energetics, enthalpy, entropy
contributions, and the heat capacity changes.15-17 The
structural and isothermal titration calorimetry binding
studies of the specific, high-affinity PQpYEEIPI peptide,
derived from the hamster middle T antigen (hmT), and
low-affinity TQpYVPMLE and PQpYQPGEN peptides
have revealed the major role of the enthalpy contribu-
tion in binding of the recognition peptide and the
dominant entropy component in binding of the low-
affinity peptides.12 The interactions of the low-affinity
peptides with the protein in the region C-terminal to
the pTyr are characterized by a relatively small contact
surface area (SA), as compared to the recognition
peptide.8,9,12 It has been suggested that the low-affinity
TQpYVPMLE and PQpYQPGEN peptides could un-
dergo significant conformational changes upon binding
to the SH2 domain, leading to variations in local binding
kinetics of the peptide residues.12 Hence, the interac-
tions at +3 hydrophobic pocket only partially determine
high affinity and specificity of the recognition peptide,
and the enthalpy contribution is the thermodynamic
parameter that distinguishes binding energetics of the
recognition high-affinity peptide and the low-affinity
peptides. The loss of the hydrophobic contacts by
modifying Ile at the pY+3 position with Ala and Gly
leads to a less favorable enthalpy, indicative of a loss
of favorable van der Waals interactions, that is only
partly compensated by a more favorable entropy.14,15

The heat capacity of phosphopeptides binding to the Src
SH2 domain is rather small and quite similar for both
high-affinity and low-affinity peptides, confirming a
binding mechanism with no appreciable conformational
change of the Src SH2 domain upon peptide binding and
a profound conservation between the structures of the
uncomplexed and complexed forms of the protein.8,9,12-17

Recent mass spectrometric and thermodynamic stud-
ies have revealed an important role of buried water
molecules at the peptide-SH2 interface to the specificity
of binding for the recognition peptide.20 The X-ray
crystal structures for the apo SH2 domain and com-
plexes with the specific peptide have shown that the
amount of water content in the binding site is retained
in complexes with the pYEEI, pYEEA, and pYEEG
peptides, with three critical buried water molecules
tightly bound in the complexes and interacting with the
glutamate residues at +1 and +2 positions. It has been
proposed that the three buried water molecules present
in complexes with the recognition peptides act as a part
of the protein interface and contribute decisively to the
promiscuity of the SH2 domain with respect to the
specific recognition peptides.20

Nuclear magnetic resonance (NMR) relaxation studies
of both free and complexed states of the SH2 domains
with the recognition and nonspecific peptides have
provided a powerful experimental tool to analyze the
dynamics of the peptide-protein interfaces and entropy
effects in thermodynamics and kinetics of binding.21-27

These experiments have dissected the role of rigidity
and flexibility in the mechanism of sequence-specific
recognition. It has been shown that dynamics of the
peptide-SH2 domain interface in the region C-terminal
to the pTyr plays an important role in modulating
binding affinity and regulating rapid exchange of pTyr
sequences.21-27 Flexibility of the hydrophobic residues

C-terminal to the pTyr group has been observed in a
comparative structural and thermodynamic analysis of
binding for the specific EPQpYEEIPIYL peptide and the
regulatory ATEPQpYQPGEN peptide with the Fyn
member of Src SH2 domains.28 The NMR shift data
have indicated that the interactions of the specific
EPQpYEEIPIYL peptide with a number of hydrophobic
residues result in a considerable reduction of flexibility
for the protein and peptide residues, which is reflected
in the favorable negative enthalpy of binding. However,
these interactions incur an entropic penalty by restrict-
ing side chain vibrational modes, which was suggested
to be the cause of the observed unfavorable entropy
component T∆S ) -2.0 kcal/mol in binding with the
Fyn member of Src SH2 domains.28 In contrast, the
regulatory peptide inserts in a well-defined conforma-
tion only in the pY binding pocket, while the C-terminal
region fluctuates between a diverse range of low-energy
bound conformations. A decreased internal motion of the
protein residues has also been observed in NMR studies
of the complexed Hck SH2 domain with the recognition
EPQpYEEIPIYL peptide using NMR spectroscopy.25,26

The enthalpy contribution generally dominates the
binding free energy differences between the recognition
and the nonspecific phosphopeptides, whereas the en-
tropy contribution plays an important role in the bind-
ing thermodynamics of nonspecific peptides. Structural
insights of the phosphopeptide-SH2 domain recognition
and enhanced understanding of the underlying ther-
modynamics have been utilized in a recent discovery of
potent tetra- and pentapeptide ligands bound to the
pp60c-src SH2 domain.29 A combination of isothermal
calorimetry, X-ray crystallography, and computational
analysis has allowed to rationalize the better potency
of the discovered pentapeptide derivatives that have less
favorable entropy but more favorable binding enthalpy
due to a greater restriction of the ligand flexibility in
the complex. The quantitative assessment of entropic
effects depends largely on the degree of achieved des-
olvation, and as a result, obtaining new hydrogen bonds
that are often solvent-exposed typically has a net
neutral effect on binding affinity. Molecular dynamics
simulations and normal mode calculations were able to
explain some of the conformational aspects of the
peptide binding, but the magnitude of these interactions
was often over- or underestimated.29 Structure-based
design of nonpeptide ligands that bind to the pp60c-src

SH2 domain30,31 and the crystal structures of the SH2
domain complexes with dipeptide analogues32 has in-
dicated that the ability to incorporate diverse structural
motifs into modest peptides depends critically on the
interactions in the hydrophobic pocket at the pY+3
position. Novel bicyclic nonpeptide inhibitors of the Src
SH2 domain with a pTyr replacement by a novel moiety
have been described.33,34 The crystal structure of the
SH2 domain complex with the inhibitor containing a
pTyr replacement by a novel moiety conforms to the
general topology of the ligand-protein interface with
the bicyclic portion extending deeply into the Ile binding
pocket at the pY+3 site.35

The binding energetics of the SH2 domain-pYEEI
mutants rather poorly correlates with simple structural
parameters such as the amount of the buried SA.17

Moreover, the changes in both enthalpy and entropy
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contributions to binding free energies are not in a
reasonable agreement with these structural descriptors,
suggesting that a detailed assessment of peptide binding
energetics based on structural information for the
mutant peptides is necessary. The lack of correlation
between the experimental and the computed binding
free energies has been originally attributed to the failure
to account for structural alterations of the interacting
components.

The desired synergy of the exhaustive sampling of the
conformational space and accurate evaluation of the
energetics is difficult to achieve for any given energy
model. The rigorous computational approaches for cal-
culation of binding affinities are the free energy per-
turbation (FEP) and thermodynamic integration meth-
ods.36,37 The decomposition of the total free energies into
components has been a subject of much interest and
discussion,38-44 and in principle, the first principles of
statistical mechanics do not allow this separation.39,40

However, complex biophysical phenomena such as mo-
lecular recognition are often analyzed on the atomic
level with the aid of empirical free energy models, which
rely upon a number of energetic terms to describe the
binding process, and assume a given structure of the
ligand-protein complex.45-52

Knowledge-based statistical ligand-protein interac-
tion potentials derived from a database of inhibitor-
enzyme complexes53-55 eliminate any fitting of param-
eters of the scoring function to the observed binding
affinities and avoid complications associated with a
delicate balance between large contributions from the
van der Waals and electrostatic interactions, hydrogen
bonding solvation effects, and conformational entropy,
which are difficult to compute accurately.56

In the linear interaction energy (LIE) approximation
method,57-68 free energies of binding are obtained from
averages of the interaction energies between the ligand
and the receptor in the bound state and water in the
unbound state, using a total of two molecular dynamics
simulations. Electrostatic interaction energies are evalu-
ated using a linear response model, and van der Waals
energies are usually scaled by an empirical factor, which
is fitted to reproduce the observed binding free energies.

A new methodology, termed MM/PBSA (molecular
mechanics Poisson-Boltzmann surface area), has been
applied to a wide variety of macromolecules and com-
plexes of macromolecules with ligands.69-76 The average
total free energy of the system is evaluated as the sum
of the polar solvation energy, which is computed using
a finite-difference Poisson-Boltzmann (PB) approach,
the nonpolar solvation term derived from the solvent-
accessible SA, and the solute entropy contribution. The
molecular mechanical energy of the molecule includes
the electrostatic, van der Waals contributions, and
internal strain energy. The ensemble of structures for
the uncomplexed protein and ligand is generated in the
MM/PBSA approach by using the molecular dynamics
trajectory of the complex and simply separating the
protein and ligand coordinates, followed by an additional
minimization of the unbound protein and unbound
ligand. This method utilizes molecular dynamics simu-
lations of the system to generate a thermally averaged
ensemble of conformations. This methodology has been
successfully applied to the analysis of protein-protein

interactions,70 free energy analysis of haptene binding
to various forms of the antibody,71 ligand-protein
binding affinity prediction,72,73 protein folding analysis,74

and free energy calculations of HIV-1 protease dimer
stability.75

Correlation between experimental binding free ener-
gies and simple theoretical models that describe binding
in terms of changes in contributions from the nonpolar
and polar components at the ligand-protein interfaces
has been found in some complexes that associate as rigid
bodies.77,78 As a result, not only the hydration contribu-
tions but also the van der Waals and electrostatic
intermolecular interactions may be proportional to the
size of the ligand-protein interface.78-80 However, the
presence of packing defects or coupling between local
folding and binding may destroy the simple relationship
between the binding affinity and the amount of buried
solvent-accessible SA. Furthermore, strong interactions
between a few residues in the interface can complicate
binding affinity prediction.78

Empirical solvent-accessible SA-based approaches,
successfully applied in folding and binding,81,82 have
been recently used to assess the binding energetics of
the recognition high-affinity PQpYEEIPI peptide from
the hmT antigen and the effect of mutations at the
pY+3 position.83 None of the employed surface-based
approaches that include different treatments of confor-
mational flexibility in the peptide and various models
of proximal-ordered water molecules has shown any
qualitative agreement with the experimental ranking.
Moreover, the adoption of different models had a drastic
effect on the computed thermodynamic properties,
thereby making the predicted binding free energies
highly model-dependent.83 A model that included the
buried water molecules treated as a part of the protein
structure and assumed the rigid peptide backbone along
with flexible side chains has provided the best agree-
ment between theory and experiment. It has been
suggested that the model structures of the peptide
mutants may significantly differ from the actual equi-
librium ensemble of the peptide conformations interact-
ing with the protein.83

Computational analysis of binding affinity for pep-
tide-SH2 domain complexes using rigorous FEP meth-
ods is difficult and time-consuming, given the size of
the peptides and a diverse range of large perturbations.
We propose a multistage protocol, which provides a
robust intermediate approach to achieve a synergy of
an adequate conformational sampling and an accurate
binding energetics, using a hierarchy of energy func-
tions. In this approach, equilibrium sampling of the
peptide conformational space is performed by simulated
tempering dynamics with the simplified, knowledge-
based energy function. This step is followed by struc-
tural clustering of the resulting conformations and
binding free energy evaluation of a single representative
from each cluster, a cluster center, to predict the
structure of the peptide bound conformation. We show
that this method is adequate for rapid screening of low-
energy conformations and recovers the crystal structure
of the pYEEI peptide. To analyze the thermodynamics
of peptide-SH2 domain binding, binding free energies
are computed by averaging the energy contributions
over the conformations from the clusters, structurally
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similar to the predicted peptide bound structure. Using
this approach, binding thermodynamics is studied in
this work for a panel of mutant peptides with Ala and
Gly sequentially substituted for each residue at +1, +2,
and +3 positions C-terminal to pTyr in the recognition
pYEEI peptide. The results are compared with binding
free energies of the minimized peptide complexes,
obtained by introducing mutations in the crystal struc-
ture of the pYEEI peptide.

Materials and Methods
Molecular Recognition Energy Model. A hierarchical

strategy is pursued with two different energy functions, a
simplified energy function84 in conjunction with Monte Carlo
simulations85-87 and the MM AMBER force field88 combined
with the solvation energy computed using a continuum
generalized Born and solvent-accessible SA (GB/SA) solvation
model.89-95 The knowledge-based simplified energetic model
includes intramolecular energy terms for the ligand, given by
torsional and nonbonded contributions of the DREIDING force
field,96 and intermolecular ligand-protein steric and hydrogen
bond interaction terms, calculated from a simplified piecewise
linear (PL) potential summed over all protein and ligand heavy
atoms (Figure 1a).84 The parameters of the pairwise potential
depend on the following different atom types: hydrogen bond
donor, hydrogen bond acceptor, both donor and acceptor,
carbon-sized nonpolar, flourine-sized nonpolar, sulfur-sized
nonpolar, and large nonpolar. The atomic radius for carbon,
oxygen, and nitrogen atoms is 1.8 Å; for flourine, it is 1.8 Å;
and for sulfur and large nonpolar, it is 2.2 Å. A multiplicative
desolvation penalty of 1.0 is applied to the attractive portion
of the interaction between nonpolar and polar atoms. Primary
and secondary amines are defined to be donors, while oxygen
and nitrogen atoms with no bound hydrogens are defined to
be acceptors. Sulfur is modeled as being capable of making
long-range, weak hydrogen bonds, which allow for sulfur-donor
closer contacts that are seen in some of the crystal structures.
Chlorine and phosphorus are modeled as large nonpolar atom
types. Crystallographic water molecules and hydroxyl groups
are defined in this model to be both donor and acceptor, and
carbon atoms are defined to be nonpolar. The steric and
hydrogen bondlike potentials have the same functional form,
with an additional three-body contribution to the hydrogen
bond term. The hydrogen bond interaction energy is multiplied
by the hydrogen bond strength term, which is a function of
the angle θ determined by the relative orientation of the
protein and ligand atoms (Figure 1b). θ is defined to be the
angle between two vectors, one of which points from the
protein atom to the ligand atom. For protein atoms with a
single heavy atom neighbor, the second vector connects the

protein atom with its heavy atom neighbor, while for protein
atoms with two heavy atom neighbors, it is the bisector of the
vectors connecting the protein atom with its two neighbors.
The long-range component of the repulsive term used for
donor-donor, acceptor-acceptor, and donor-metal close con-
tacts is scaled according to the relative positioning of the two
atoms. The scaling is equivalent to that used for hydrogen
bonding; i.e., the penalty is greatest when the angle θ is 180
degrees, fading to zero at 90 degrees and below.

For molecular docking simulations, it has been shown that
the energy surface must be smooth for robust structure
prediction of ligand-protein complexes;97,98 softening the
potentials is a way to smooth the force field and enhance
sampling of the conformational space while retaining adequate
description of the binding energy landscape. It has been shown
that the simplified PL energy function produces reliable results
in predicting crystal structures of ligand-protein com-
plexes.84-87,97,98 The PL energy function has no singularities
at interatomic distances, effectively explores accessible ligand
binding modes, and samples a large fraction of conformational
space, particularly at high temperature.

In this study, a hierarchical approach is employed where
the PL energy function is used in combination with a powerful
searching technique, parallel Monte Carlo simulated temper-
ing dynamics,99-107 to adequately sample the conformational
space and describe the multitude of the inhibitor binding
modes. The advantage of the employed simulated tempering
dynamics and the simplified energy function is the ability to
adequately sample the conformational space and reliably
determine the multitude of putative low-energy conformations
of the ligand.

We assume that the simplified energy function, which has
been found reliable in structure prediction of peptide com-
plexes with SH2 domains, follows the shape of the “true”
potential and can detect the density of low-energy states in
the regions surrounding favorable binding modes. This as-
sumption implies that the breadth of the local minima basins
results from long-range character of hydrophobic interactions
and should be recognizable by using the simplified knowledge-
based energy function.84-87,97,98 However, this function is less
accurate in detecting the exact location and energetics of the
native state because of the inaccuracy in quantifying the exact
magnitude of ligand-protein interactions.

In ligand-protein binding, multistage approaches with a
hierarchy of energy functions108-111 have been found more
reliable in predicting structures of the ligand-protein com-
plexes. A two-step protocol, including structural clustering of
low-energy conformations, generated in equilibrium simula-
tions with the simplified energy function, is followed by the
energy minimization with the AMBER force field, supple-
mented with a solvation correction term. This approach has

Figure 1. (A) Functional form of the ligand-protein interaction energy. For steric interactions, A ) 0.93B, C ) 1.25B, D ) 1.5B,
E ) -0.4, F ) 15.0, and B ) rl + rp is the sum of the atomic radii for the ligand and protein atoms. For hydrogen bond interactions,
A ) 2.3, B ) 2.6, C ) 3.1, D ) 3.4, E ) -4.0, and F ) 15.0. For sulfur hydrogen bond interactions, A ) 2.7, B ) 30.0, C ) 3.5,
D ) 3.8, E ) -2.0, and F ) 15.0. For chelating interactions with the metals, A ) 1.5, B ) 1.7, C ) 2.5, D ) 3.0, E ) -10.0, and
F ) 15.0. For repulsive interactions, A ) 3.2, E ) 0.1, F ) 15.0, and B, C, and D are not relevant. The units of A, B, C, and D are
Å, and for E and F, the units are kcal/mol. (B) The hydrogen bond interaction energy is multiplied by the hydrogen bond strength
term, which is a function of the angle θ determined by the relative orientation of the protein and ligand atoms.
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led to structure predictions in better agreement with experi-
ment than using either energy function by itself and has
allowed us to resolve some common failures in ligand-protein
docking.112

In this work, a binding free energy approach, which includes
a MM AMBER force field and a GB/SA solvation contribution,
is used to evaluate the equilibrium samples, generated for each
peptide with the PL energy function at T ) 300 K, and thereby
characterize more precisely the energetics of the putative
binding modes. The crystal structure of the pYEEI peptide
bound conformation with the Src SH2 domain and the mini-
mized bound conformations of the peptide mutants, obtained
by introducing mutations in the original crystallographic
conformation of pYEEI, have been used as the reference
structures in the analysis of equilibrium fluctuations.

The analysis of the equilibrium sampling can be facilitated
by conducting structural clustering of the conformational space
and binding free energy evaluation of a single representative
from each cluster, a cluster center. The peptide-protein
complex with the lowest energy, as measured in the AMBER
force field with the GB/SA solvation model, determines the
predicted peptide bound conformation. In the subsequent
thermodynamic analysis, clusters of conformations, structur-
ally similar to the predicted peptide structure, are used to
evaluate the average contributions to the binding free energy
components of the complex, protein, and peptide, respectively.
The ensemble of structures for the uncomplexed protein and
peptide are generated by using the corresponding samples of
the peptide-protein complex and separating the protein and
ligand coordinates, followed by an additional minimization of
the unbound protein and unbound ligand. In this procedure,
which is conceptually similar to the MM/PBSA approach, more
time-consuming PB continuum calculations are replaced with
less demanding GB solvation calculation, which generally
correlate well with the PB values.113

The total entropy contribution is composed of solvation
component and changes in conformational entropy in both the
receptor and the ligand resulting from association and restrict-
ing the respective degrees of freedom in going from the free
state to the bound state. The conformational states of the
bound SH2 domain are very similar in complexes with differ-
ent peptides and also virtually identical to the apo form of the
protein. As a result, the change in conformational entropy of
the SH2 domain is nearly constant for the studied peptide-
SH2 domain complexes. The entropy components arising from
ligand degrees of freedom are generally difficult to evaluate
since they critically depend on flexibility in the bound state,
and the magnitude of ligand fluctuations is significantly
different from one conformational well to another. The har-
monic approximation is used to assess the order of magnitude
for the entropy loss during binding. The normal-mode analysis
is carried out and vibrational entropy is computed from
classical statistical mechanics formula with the AMBER
module nmode for the energy minimized structures of the
complex, the free protein, and the free peptide without water
molecules. A dielectric constant of 4rij, where rij is the distance
between atoms i and j of the molecule, is used in the normal
mode calculations.

The average total free energy of the molecule G is evaluated
as follows:

In the GB/SA model, the Gcavity and Gvdw contributions are
combined together via evaluating solvent-accessible SAs:

where GSA is the nonpolar solvation term derived from the
solvent-accessible SA.

where Gpol is the polar solvation energy, which is computed
using the GB/SA solvation model. TSsolute is the vibrational
entropy of the molecule. EMM is the molecular mechanical
energy of the molecule summing up the electrostatic, van der
Waals contributions, and internal strain energy:

Using these equations, the binding free energy of the
ligand-protein complex is computed as follows:

From this equation, one can determine contributions of the
ligand-protein interaction energy (∆GMM), strain energy
(∆Gstrain), and solvation energy (∆GGB/SA) to the total binding
free energy.

The energy of each ligand-protein complex is subjected to
the conjugate gradient minimization as implemented in ver-
sion 7.0 of the MacroModel molecular modeling software
package.90 All protein residues within a 3 Å radius sphere from
the ligand are treated as flexible during minimization. All
protein residues within a 2 Å radius from the flexible shell
form a first shell of restrained atoms with the force constant
100.0 kJ/mol A2. A second shell of restrained atoms with the
force constant 200 kJ/mol A2 consists of the residues within a
2 Å radius from the first shell, and finally, the third shell of
restrained atoms is generated by the residues that reside
within 2 Å from the second shell, and they are restrained with
the force constant 300 kJ/mol A2. The remaining protein atoms
are treated as frozen atoms and do not move during the
minimization procedure. The interactions between all type of
atoms are counted in the total energy value, including interac-
tions between frozen atoms and restrained atoms and frozen
atoms and flexible atoms. A cutoff of 8 Å is set for computing
nonbonded van der Waals interactions, and a 20 Å cutoff is
used for computing electrostatic interactions. MNDO atomic
charges have been derived for each peptide, and the protein
atoms have been assigned the AMBER force field charges.

Monte Carlo Simulations of Ligand-Protein Interac-
tions. In simulations of ligand-protein interactions, the
protein is held fixed in its bound conformation, while rigid body
degrees of freedom and rotatable angles of the ligand are
treated as independent variables. Ligand conformations and
orientations are sampled in a parallelepiped that encompasses
the binding site obtained from the crystallographic structure
of the corresponding complex with a 10.0 Å cushion added to
every side of this box to accurately reproduce both the unbound
and the bound peptide conformations. Bonds allowed to rotate
include those linking sp3 hybridized atoms to either sp3 or sp2

hybridized atoms and single bonds linking two sp2 hybridized
atoms. The initial ligand bond lengths, the bond angles, and
the torsional angles of the unrotated bonds were obtained from
the crystal structures of the bound ligand-protein complexes.
Three critical buried water molecules from the crystal struc-
ture of the complex have been included in simulations as a
part of the protein structure. Because there are no conforma-
tional changes upon peptide binding and the structure of the

Gmolecule ) Gsolvation + EMM - TSsolute (1)

Gsolvation ) Gcavity + Gvdw + Gpol (2)

GSA ) Gcavity + Gvdw ) ∑
i

σiSAi (3)

Gpol ) -166.0(1 -
1

ε
) ∑

i
∑

j

qiqj

(rij
2 + Rij

2 exp(-Dij))
0.5

(4)

EMM ) Ees + Evdw + Eint (5)

∆Gbind ) Gcomplex - Gprotein - Gligand (6)

∆Gbind ) ∆Ginteraction + ∆Gstrain + ∆Gsolvation (7)

∆GMM ) EMM
complex - EMM

boundprotein - EMM
boundligand (8)

∆Gstrain ) (EMM
boundprotein - EMM

freeprotein) +

(EMM
boundligand - EMM

freeligand) (9)

∆GGB/SA ) G solvation
complex - G solvation

freeprotein - G solvation
freeligand (10)
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complexed and uncomplexed forms of the SH2 domains are
similar, computational structure prediction of the peptide
bound conformation is carried out with the protein bound
conformation taken from the crystal structure of the corre-
sponding peptide-protein complex.

Monte Carlo simulations allow to dynamically optimize the
step sizes at each temperature by taking into account the
inhomogeneity of the molecular system.113 The acceptance ratio
method is used to update the step sizes every cycle of 1000
sweeps. For all of these simulations, we equilibrated the
system for 1000 cycles (or one million sweeps) and collected
data during 5000 cycles (or five million sweeps) resulting in
5000 samples at each temperature. A sweep is defined as a
single trial move for each degree of freedom of the system.

A key parameter is the acceptance ratio, which is the ratio
of accepted conformations to the total number of trial confor-
mations. At a given cycle of the simulation, each degree of
freedom can change randomly throughout some prespecified
range determined by the acceptance ratio obtained during the
previous cycle. This range varies from one degree of freedom
to another because of the complex nature of the energy
landscape. At the end of each cycle, the maximum step size is
updated and used during the next cycle.

Simulations are arranged in cycles, and after a given cycle
i, where the average acceptance ratio for each degree of
freedom j is 〈Pj〉i, the step sizes σj

i for each degree of freedom
are updated for cycle i + 1 according to the formula

where 〈Pideal〉 is the desired acceptance ratio, chosen to be 0.5.
The parameters a and b are used to ensure that the step sizes
remain well-behaved when the acceptance ratio approaches 0
or 1. They are assigned so that the ratio σi+1/σi is scaled up by
a constant value s for 〈Pj〉i ) 0 and down by the same constant
for 〈Pj〉i ) 1. Solving the equations

with s ) 3 yields a ) 0.673 and b ) 0.065.
Equilibrium simulations have been carried out using paral-

lel simulated tempering dynamics with 50 replicas of the
ligand-protein system attributed, respectively, to 50 different
temperature levels that are uniformly distributed in the range
between 5300 and 300 K. Independent local Monte Carlo
moves are performed independently for each replica at the
corresponding temperature level, but after a simulation cycle
is completed for all replicas, configuration exchanges for every
pair of adjacent replicas are introduced. The m-th and n-th
replicas, described by a common Hamiltonian H(X), are
associated with the inverse temperatures âm and ân and the
corresponding conformations Xm and Xn. The exchange of
conformations between adjacent replicas m and n is accepted
or rejected according to Metropolis criterion with the prob-
ability

where δ ) [ân - âm][H(Xm) - H(Xn)]. Starting with the highest
temperature, every pair of adjacent temperature configura-
tions is tested for swapping until the final lowest value of
temperature is reached. This process of swapping configura-
tions is repeated 50 times after each simulation cycle for all
replicas whereby the exchange of conformations presents an
improved global update that increases thermalization of the
system and overcomes slow dynamics at low temperatures on
rough energy landscapes, thereby permitting regions with a
small density of states to be sampled accurately. During

simulation, each replica has a nonnegligible probability of
moving through the entire temperature range and the detailed
balance is never violated, which guarantees each replica of the
system to be equilibrated in the canonical distribution with
its own temperature.99-107

Similarity Clustering. The 3D similarity calculations are
based on the spatial proximity of atoms in a binding site and
the atom type. Four types of atoms are distinguished: hydrogen
bond donors, hydrogen bond acceptors, hydrogen bond donors
and acceptors, and nonpolar atoms. The atom type compat-
ibility a(i, j) is assigned a value between 0.0 and 1.0, with the
compatibility between two atoms of the same type defined to
be 1.0, that between a donor and acceptor atom is 0.0, and
other combinations of atoms have compatibilities between 0.0
and 1.0.

The spatial proximity between two atoms i and j is evalu-
ated with a Gaussian function p(i, j) ) 10(-ri,j

2 /σ2), where rij is
the distance between atoms i and j and σ ) -c2/log(p), where
c and p denote the cutoff distance and proximity threshold,
respectively. Both the cutoff distance and the proximity
threshold determine the shape of the Gaussian function to
evaluate spatial proximity of two atoms, with c ) 3.0 Å and p
) 0.000 032.

A descriptor d(i, j) is calculated from the spatial proximity
and the atom type compatibility

An atom descriptor D m
n (i) for atom i in molecule m is then

calculated by summation over all N atoms in molecule n,
D m

n (i) ) ∑ j)1
N d m

n (i, j). The intermolecular similarity between
molecules m and n is given by the Tanimoto coefficient115-117

Molecules are grouped into clusters by comparing the
intermolecular similarity coefficient. The first molecule is
assigned to the first cluster. The next molecule is assigned to
the cluster in which a cluster member has the highest
similarity with the next molecule, if the similarity is above a
threshold, chosen to be 0.85. Otherwise, the next molecule is
assigned to a new cluster. The first member of the a cluster is
called the cluster center. After all molecules are assigned to
clusters, the molecules are arranged in a new order, starting
with the largest cluster and proceeding to the smallest cluster.
The reordered set of molecules is subjected to the same
clustering procedure. This procedure is iterated until the
information entropy converges to a minimum. The clusters
with at least 100 members are analyzed. Because conforma-
tions that belong to the same cluster are equivalent with 85%
structural similarity, different clusters are compared by
analyzing cluster centers.

Results and Discussion

We begin with the structural analysis of the equilib-
rium simulations conducted for the panel of the Ala and
Gly mutants of the pYEEI peptide. The equilibrium
simulations of the pYEEI peptide binding (Figure 2a)
and the alanine peptide mutants pYAEI, pYEAI, and
pYEEA (Figure 2b-d) have shown frequent transitions
between the nativelike binding mode, located at root
mean square deviation (RMSD) ) 2.0 Å from the
reference structures and the binding mode at RMSD )
4.0-5.0 Å from the reference states (Figure 2). A
considerably broader range of fluctuations with frequent

σ j
i+1 ) σ j

i ln[a〈Pideal〉 + b]

ln[a〈Pj〉
i + b]

(11)

s-1 )
ln[a〈Pideal〉 + b]

ln[b]
(12)

s )
ln[a〈Pideal〉 + b]

ln[a + b]
(13)

p ) min(1, exp[-δ]) (14)

d(i, j) ) p(i, j) × a(i, j)ifr(i, j) e c (15)

d(i, j) ) 0ifr(i, j) > c (16)

S(m, n) ) (∑ i)1
M D m

m(i) Dm
n (i) + ∑ j)1

N Dn
m(j) Dn

n(j))/
(∑ i)1

M Dm
m(i)2 + ∑ j)1

N Dn
n(j)2 - ∑ i)1

M Dm
m(i) Dm

n (i) -

∑ j)1
N Dn

m(j) Dn
n(j)) (17)
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excursions to the alternative low-energy bound confor-
mations, which are situated at RMSD ) 8-9 Å from
the reference states, has been observed in equilibrium
simulations of the Gly mutants pYGEI, pYEGI, and
pYEEG (Figure 3b-d). This suggests that the Gly
mutants may exhibit a greater degree of conformational
flexibility in the bound state than the recognition pYEEI
peptide and its Ala mutants, which is consistent with
the experimentally observed more favorable binding
entropy for the Gly mutants.

A convenient approach to distinguish energy minima
that are distant from the reference structure is to
generate clusters of structurally similar conformations,
since two distinct binding modes will result in two
different conformational clusters. Conformations gener-
ated in the equilibrium simulations of the pYEEI
peptide binding have been clustered, and the cluster
centers have been superimposed on the crystal structure
of the bound pYEEI (Figure 4). A significant conforma-
tional diversity of the bound peptide conformations can
be observed, while the topology of the extended bound
conformation is still retained. Structural features of the
dominant topology for the bound pYEEI peptide that
are present in the low-energy bound conformations from
various structural clusters constitute an extended con-
formation of the inhibitors with strong specific interac-
tion in the pTyr pocket and favorable hydrophobic
interactions at the pY+3 site (Figure 4).

The pYEEI bound conformations from clusters 3, 5,
9, and 10, which are located at RMSD ) 1.5, 2.5, 2.8,
and 2.3 Å, respectively, from the crystal structure
(Figure 5a) have a more favorable total binding free
energy (Figure 5b). A subtle balance between the
binding free energy components, the favorable peptide-
protein interaction energy, and the solvation energy loss
plays a crucial role in determining the lowest energy
structure (Figure 5c,d). Nevertheless, there is a rela-
tionship between the binding free energies of the
determined low-energy peptide conformations from dif-
ferent clusters and their deviation from the crystal
structure of the bound pYEEI peptide (Figure 5a,b). The
closer the predicted structure conforms to the crystal-
lographic conformation, the lower the energy. This
suggests that despite an inherently sensitive nature of
the binding free energy functions, consisting of large and
compensatory contributions, these models can discrimi-
nate the crystal structure of the bound pYEEI peptide
as the lowest energy solution. Structural clustering of
the equilibrium samples and subsequent binding free
energy evaluation of cluster centers requires only a
relatively small number of conformational samples to
recover the crystal structure of the pYEEI peptide and
therefore allows for rapid screening of the low-energy
conformations.

The low-energy bound conformations of the pYEEA
and pYEEG peptides, superimposed on the crystal

Figure 2. Time-dependent equilibrium history of the Src SH2 domain binding with the pYEEI peptide (a) and its Ala mutants
at T ) 300 K: pYAEI (b), pYEAI (c), and pYEEA (d).
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structure of the pYEEI bound conformation, demon-
strate the increased conformational diversity (Figures
6 and 7). However, the overall topology of the crystal
structure of the pYEEI complex is still retained in the
predicted conformations. Importantly, the conformations
that are the closest to the reference structure have
indeed the lowest binding free energy for the Ala

mutants (Figure 8) and are predicted as the bound
conformations for the respective peptides. However, the
sensitive nature of the binding free energy model may
lead to alternative low-energy solutions for the pYEAI
peptide, corresponding to clusters 6 and 8, which are
close energetically to the predicted structure (Figure
8c,d) but are located at RMSD ) 4.0 and 6.1 Å,
respectively, from the reference structures. For the
pYEEA peptide, the low-energy solutions corresponding
to clusters 1, 3, and 6 are situated at RMSD ) 1.5, 1.6,
and 1.7 Å, respectively, from the reference state (Figure
8e,f). However, there is also an energetically similar
solution, corresponding to cluster 5, which resides at
RMSD ) 5.7 Å from the reference structure. Energeti-
cally similar but structurally different low-energy con-
formations have also been observed for the pYGEI and
pYEGI peptide mutants (Figure 9a-d), suggesting that
the “funnel-like” behavior of the energy function ob-
served for the pYEEI mutant is not general and cannot
be readily extended to the energetics of the pYEEI
mutants. It is worth mentioning that for all peptides,
with the exception of pYEEA and pYEGI, binding free
energies are computed by averaging the energy compo-
nents over conformations from the unique cluster to
which the predicted peptide bound structure belongs.
For pYEEA, structurally similar, low-energy conforma-
tions from clusters 1 and 3 (Figure 8e,f) are also

Figure 3. Time-dependent equilibrium history of the Src SH2 domain binding with the pYEEI peptide (a) and its Gly mutants
at T ) 300 K: pYGEI (b), pYEGI (c), and pYEEG (d).

Figure 4. Superposition of the crystallographic conformation
of the pYEEI peptide (blue) bound to the Src SH2 domain
protein structure with 10 low-energy cluster centers (color-
coded by atom type) obtained for pYEEI. Connoly surface of
the Src SH2 domain protein in the complex with pYEEI is
shown.
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included in calculations of the average energies. In the
case of pYEGI, all conformations from cluster 8 (Figure
9c,d) are considered in the binding free energy calcula-
tions. The superposition of the pYEEI crystal structure
with the predicted bound conformations for Ala and Gly

mutants (Figure 10) has indicated that the topology of
the extended bound conformation and the energetically
favorable interactions formed by the phosphotyrosyl
group and hydrophobic residue at the pY+3 position are
well-preserved. The increased flexibility is observed for

Figure 5. Structural and energetic analysis of the pYEEI peptide: RMSD values of the pYEEI cluster centers from the crystal
structure of pYEEI (a), the total binding free energy of the pYEEI cluster centers (b), the interaction energy of the pYEEI cluster
centers (c), and the solvation energy of the pYEEI cluster centers (d).

Figure 6. Superposition of the crystallographic conformation
of the pYEEI peptide (blue) bound to the Src SH2 domain
protein structure with 10 low-energy cluster centers (color-
coded by atom type) obtained for the pYEEA mutant peptide.
Connoly surface of the Src SH2 domain protein in the complex
with pYEEI is shown.

Figure 7. Superposition of the crystallographic conformation
of the pYEEI peptide (blue) bound to the Src SH2 domain
protein structure with 10 low-energy cluster centers (color-
coded by atom type) obtained for the pYEEG mutant peptide.
Connoly surface of the Src SH2 domain protein in the complex
with pYEEI is shown.
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the pYEEA peptide and all Gly mutants, while the
topology of the bound peptide is retained for the pYAEI
and pYEAI peptides due to important water-mediated
specific interactions between the glutamate residues at
the +1 and +2 positions and the buried water molecules,
treated as a part of the protein structure. The range of

structural deviations of the predicted peptide conforma-
tions from the reference states (Figure 11) has reflected
a general trend for the Gly mutants to further deviate
from the initial conformations generated by mutations
in the crystallographic conformation of the pYEEI
peptide.

Figure 8. Structural and energetic analysis of the Ala mutants of the pYEEI peptide: RMSD values of the pYAEI cluster centers
from the crystal structure of pYEEI (a) and the total binding free energy of the pYAEI cluster centers (b); RMSD values of the
pYEAI cluster centers from the crystal structure of pYEEI (c) and the total binding free energy of the pYEAI cluster centers (d);
RMSD values of the pYEEA cluster centers from the crystal structure of pYEEI (e) and the total binding free energy of the
pYEEA cluster centers (f).
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Upon binding, the +3 Ile of the pYEEI peptide makes
a number of intimate contacts with a pocket of the Src
SH2 domain formed by hydrophobic residues. The loss
of the favorable hydrophobic contacts in the pocket by
substituting Ala and Gly at the +3 position causes the
loss in binding affinity of 1.4 kcal/mol for Ala and 1.8

kcal/mol for Gly.5-10 The results of binding free energy
calculations reveal a consistent decrease in binding
affinity of the pYEEI peptide upon mutation to Ala and
Gly at +3 position in agreement with the experimental
trend (Tables 1-3). This trend, however, could not be
reproduced using the minimized reference structures of

Figure 9. Structural and energetic analysis of the Ala mutants of the pYEEI peptide: RMSD values of the pYGEI cluster centers
from the crystal structure of pYEEI (a) and the total binding free energy of the pYGEI cluster centers (b); RMSD values of the
pYEGI cluster centers from the crystal structure of pYEEI (c) and the total binding free energy of the pYEGI cluster centers (d);
RMSD values of the pYEEG cluster centers from the crystal structure of pYEEI (e) and the total binding free energy of the
pYEEG cluster centers (f).
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these peptides (Tables 1 and 3). The replacement of Glu
at +1 position by Ala and Gly results in a modest
reduction of binding for pYAEI and a more dramatic
loss of affinity for pYGEI.5-10 This may result from the
loss of the interactions between the peptide side chain
at the +1 position and critical Tyr âD5 protein residue.10

The computed average binding free energies reproduce
the experimental trend of the binding affinity loss upon
Ala and Gly mutations at the +1 position (Tables 2 and
3). Moreover, the free energy model suggests that a
considerable loss in binding enthalpy upon mutations
of Glu at the +1 position results from the loss of

favorable hydrophobic interactions of Cγ and especially
Câ side chain atoms of Glu with the Tyr âD5 protein
residue. A small favorable contribution of the vibrational
entropy to binding of the pYAEI and pYGEI peptides is
found (Table 3), suggesting that the interactions of Glu
at the +1 position with the Tyr âD5 protein residue may
restrict the flexibility of the peptide. As a result, once
this contact is lost, the entropy of the bound peptide
tends to compensate for the apparent loss of favorable
interactions. This experimentally observed trend could
not be reproduced by the binding free energy model
when the minimized reference mutant structures were
used (Tables 1 and 3).

The computed binding free energies also reproduce a
more dramatic loss in affinity for the pYGEI mutant as
compared to pYEGI (Table 2). However, this difference
in binding affinity is a result of a considerably less
favorable binding enthalpy for the pYGEI mutant. The
computational analysis attributes this net result to a
more significant solvation penalty for the pYGEI mu-
tant, suggesting that there may be a contribution from
the enthalpy of solvation that could drive the observed
phenomenon. However, some caution is necessary when
the net binding free energy differences are rationalized
on the basis of individual contributions.

The energetic analysis for the pYEAI and pYEGI
peptides reveals a decrease in the peptide-protein
interaction energy (Tables 2 and 3) upon substitutions
at the +2 position, resulting in part from the loss of
favorable water-mediated interaction between the Glu
side chain at the +2 position and Arg âD1. This deficit
is compensated by a less detrimental solvation penalty
and a more favorable solvation energetics of the com-
plex. A network of interactions connecting the Glu side
chain at the +2 position and highly conserved Arg âD1
is important for integrity of the water structure, which
plays a role in ensuring specificity of binding for the
recognition peptides.20 Because the formation of hydro-
gen bonds contributes to the enthalpy of binding, the
experimentally observed changes in enthalpy upon
mutations at the +2 position may be a result of loss of
water-mediated interactions, abrogated in the presence
of Ala and Gly residues.

The computed binding free energies for the minimized
Ala and Gly mutants, obtained by modifying the corre-
sponding residues in the crystal structure of the pYEEI
peptide, show no correlation with the experimental
binding affinity in the absence of the entropy component
(Figure 12a). Moreover, these computed free energies
reveal a similar lack of agreement with the experimen-
tal enthalpy of binding (Figure 12b). However, the
addition of the entropy term has only a marginal effect
on the resulting correlation (Figure 13a,b). Incorpora-
tion of statistically meaningful ensembles of peptide
conformations results in a better quantitative agree-
ment with the experimental data than the computed
binding free energies of the mutant complexes obtained
by introducing mutations in the crystallographic con-
formation of pYEEI and recent empirical approaches
based on the model peptide structures.59 A correlation
between the experimental and the computed binding
free energies recovers from R2 ) 0.41 to 0.51 when the
entropy component is included in calculations (Figures
12c and 13c). The correlation with the experimental

Figure 10. Superposition of the crystallographic conformation
of the bound pYEEI peptide (blue) with the lowest energy
cluster centers (color-coded by atom type) obtained for the
pYAEI, pYEAI, pYEEA, pYGEI, pYEGI, and pYEEG peptides.
Connoly surface of the Src SH2 domain protein in the complex
with pYEEI is shown.

Figure 11. RMSD values for the lowest energy cluster centers
obtained for the pYEEI, pYAEI, pYEAI, pYEEA, pYGEI,
pYEGI, and pYEEG peptides.
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enthalpies improves from R2 ) 0.47 to 0.70 in the more
detailed model (Figures 12d and 13d). Nevertheless, the
average binding free energies based on the predicted
bound conformation still exhibit a rather modest cor-
relation with the experimental binding affinity.

The computed changes in vibrational entropy upon
binding for the minimized peptide mutants are large
and unfavorable, while these values are considerably
smaller when determined using the ensembles of struc-
turally similar low-energy conformations (Table 3). The
observed magnitude of the vibrational entropy changes
becomes much closer to the range of the experimental
entropy when the average contributions are computed
using the MM/GB/SA model. The changes in vibrational
entropy can be directly compared to the contribution due
to translational and rotational entropy loss upon bind-
ing,118 because six new internal degrees of freedom in
the complex correspond to the lost translational and
rotational motions of the individual components. It has
been shown in recent experimental119 and theoretical

estimates120,121 that the loss of translational and rota-
tional entropy appears considerably smaller, approxi-
mately T∆S ) 3-4 kcal/mol than the originally sug-
gested range between 12 and 18 kcal/mol.122,123 The
changes in vibrational entropy upon binding with the
peptides are generally unfavorable (Table 3); neverthe-
less, their magnitude is comparable with the recent,
more accurate estimates for the loss of rotational and
translational entropy. A relatively large error typically
associated with computations of the vibrational entropy
changes makes the prediction of the entropic changes
quite difficult. However, the error bar in calculations
of vibrational entropy of studied peptides is quite
reasonable given the size of these ligands and results
from averaging the entropy contribution over structur-
ally similar and minimized conformations (Table 3). It
is worth mentioning that in MM/PBSA studies of
ligand-protein binding the errors in vibrational entropy
estimates were much larger, up to 5 kcal/mol.70-73 Only,
after averaging over structurally similar conformations,

Table 1. Energy Contributions to the Free Energy of Binding for the Minimized Mutant Complexesa

complex bound protein bound peptide
unbound minimized

peptide
unbound minimized

protein

peptide EMM GGB/SA EMM GGB/SA EMM GGB/SA EMM GGB/SA EMM GGB/SA

YEEI -2497.09 -1503.97 -1551.16 -1860.10 216.91 -735.91 214.30 -734.93 -1636.28 -1797.35
YAEI -2482.57 -1449.80 -1550.45 -1858.67 79.68 -528.58 76.23 -526.77 -1636.28 -1797.35
YEAI -2436.95 -1474.18 -1551.88 -1859.60 89.19 -517.97 87.03 -517.43 -1636.28 -1797.35
YEEA -2525.96 -1478.87 -1549.44 -1860.14 219.56 -739.93 216.90 -739.00 -1636.28 -1797.35
YGEI -2482.40 -1447.67 -1550.33 -1858.65 82.59 -529.88 78.93 -527.84 -1636.28 -1797.35
YEGI -2467.32 -1468.43 -1546.56 -1862.42 72.24 -522.04 69.96 -521.87 -1636.28 -1797.35
YEEG -2530.27 -1495.08 -1549.68 -1859.94 201.28 -744.71 198.63 -743.76 -1636.28 -1797.35

a Mutant complexes are obtained by introducing mutations in the crystallographic conformation of pYEEI. All energies are given in
kcal/mol. The experimental binding free energies are taken from ref 14.

Table 2. Average Energy Contributions to the Free Energy of Binding Computed from the Predicted Structures of the Peptides by
the Hierarchical Approacha

complex bound protein bound peptide
unbound minimized

peptide
unbound minimized

protein

peptide EMM GGB/SA EMM GGB/SA EMM GGB/SA EMM GGB/SA EMM GGB/SA

YEEI -2534.96 -1474.65 -1561.37 -1849.59 216.21 -740.16 211.20 -737.07 -1636.28 -1797.35
YAEI -2507.02 -1428.12 -1594.26 -1818.56 92.48 -546.46 90.26 -546.89 -1636.28 -1797.35
YEAI -2479.70 -1465.60 -1546.79 -1863.84 67.83 -523.45 65.50 -523.54 -1636.28 -1797.35
YEEA -2550.70 -1472.19 -1555.62 -1852.05 198.34 -736.16 192.60 -733.87 -1636.28 -1797.35
YGEI -2521.14 -1411.09 -1564.19 -1849.15 66.98 -523.53 63.78 -522.47 -1636.28 -1797.35
YEGI -2510.02 -1421.51 -1574.48 -1831.66 66.17 -515.67 62.03 -515.05 -1636.28 -1797.35
YEEG -2583.83 -1436.86 -1547.92 -1854.63 180.00 -731.74 178.04 -731.44 -1636.28 -1797.35

a All energies are given in kcal/mol. The experimental binding free energies are taken from ref 14.

Table 3. Energy Contributions to the Binding Free Energy of the Peptides with the Src SH2 Domainsa

computational protocol I computational protocol II experiment

peptide ∆GMM ∆GGB/SA T∆Svib ∆G total ∆GMM ∆GGB/SA T∆Svib ∆G total ∆H ∆G

YEEI -1075.11 1028.31 -6.40(1.5) -40.40(1.2) -1109.88 1059.77 -3.76(1.6) -46.35(1.5) -7.7(0.2) -9.2(0.1)
YAEI -922.52 874.32 -1.43(1.1) -46.77(0.8) -961.00 916.12 0.25(1.0) -45.13(1.1) -7.7(0.2) -8.7(0.1)
YEAI -887.70 840.60 -11.90(1.8) -35.20(1.1) -908.92 855.29 -7.10(1.5) -46.53(1.6) -6.3(0.1) -8.2(0.1)
YEEA -1106.58 1057.48 -11.64(1.6) -37.46(1.3) -1107.02 1059.03 -6.72(0.7) -41.27(1.0) -5.1(0.4) -7.8(0.4)
YGEI -925.05 877.52 -1.25(0.9) -46.28(0.7) -948.64 908.73 0.79(0.9) -40.70(1.1) -4.8(0.1) -7.1(0.1)
YEGI -901.00 850.79 -17.91(1.6) -32.30(0.9) -935.77 890.89 -6.64(1.2) -38.24(1.5) -6.0(0.1) -7.8(0.1)
YEEG -1092.62 1046.03 -8.92(1.2) -37.67(1.0) -1125.59 1091.93 -2.26(1.0) -31.40(1.4) -3.6(0.1) -7.4(0.1)

a All energies are given in kcal/mol. The experimental binding free energies are taken from ref 14. ∆GMM, ∆GGB/SA, T∆Svib, and ∆G
total contributions to the binding free energy are defined in the Materials and Methods section. In the protocol I, energy contributions to
the binding free energy are determined based on the minimized mutant complexes generated by introducing mutations in the crystal
structure of the pYEEI peptide. In the protocol II, energy contributions to the binding free energy are determined based on the average
contributions computed from the predicted structures of the peptides with the hierarchical approach. The values in parentheses represent
the standard error of the mean.
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this error was reduced to 0.5-1.5 kcal/mol. The struc-
tural analysis of the peptide-SH2 domain complexes
suggests that using a representative ensemble of struc-
tures for the reference ligand bound to the protein,
followed by mutation of the reference ligand into the
desired derivative for each snapshot, as typically em-
ployed in MM/PBSA applications, may sometimes lead
to erroneous results. This assumption is valid only when
the equilibrium sampling of the mutant ligand closely
resembles the trajectory of the reference ligand. For the
pYEEA and pYEEG peptide mutants, the predicted
lowest energy conformations considerably deviate from
the reference structures. Even when the molecular
dynamics trajectories are generated separately for each
mutant ligand, the system may get trapped in local
minima and never reach the equilibrium at lower
temperatures. In the employed hierarchical approach,
the conformational space of the peptides can be ef-
ficiently explored at the first stage of the protocol.
Consequently, the binding free energies are computed
by averaging the contributions over low-energy states
from the basin, surrounding the most energetically
favorable peptide binding mode.

There are a number of limitations of the proposed
hierarchical approach in its current implementation,

including only a partially flexible receptor and a simpli-
fied model for the entropy contribution. A detailed
description of the conformational entropy can generally
include the following three contributions: the entropy
change associated with the transfer of a side chain from
the interior of the protein to its surface; the entropy
change gained by a surface-exposed side chain when the
backbone changes from a unique folded conformation
to an unfolded conformation; and the entropy change
gained by the backbone upon unfolding from a unique
native conformation.124,125 At the present time, no
reliable models for estimates of these contributions are
available. Nevertheless, a structure-based thermody-
namic analysis approach, which utilized this entropy
model, has reproduced the balance of stabilizing con-
tributions and the magnitude of the Gibbs free energy
for HIV-1 protease stabilization and binding to various
inhibitors in agreement with the experimental mea-
surements.126 More experimentation is required to as-
sess the limitations of the restrained residues lying
outside the active site. In fact, thermodynamic mapping
of the Src SH2 domain-pYEEI peptide interface has
stressed that the seemingly isolated peptide-protein
interactions can be dependent on the composition of the
surrounding protein environment.17

Figure 12. Correlation between the computed binding free energies of the minimized mutant complexes, obtained by introducing
mutations in the crystallographic conformation of the pYEEI peptide and the experimental binding free energies (a) and enthalpies
(b). Correlation between the computed binding free energies obtained with the hierarchical approach and the experimental binding
free energies (c) and enthalpies (d). No entropy contribution is included in the computed binding free energies.
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Conclusions
The structure prediction strategy using equilibrium

sampling of the peptide conformational space by simu-
lated tempering dynamics with the simplified, knowledge-
based energy function has been shown to be adequate
in generating the multitude of available low-energy
peptide conformations. The following step of structural
clustering and energy evaluation of the resulting con-
formations provides a reliable procedure for rapid
screening of low-energy conformations and can recover
the crystal structure of the pYEEI peptide. Structural
features of the peptide-SH2 domains binding and the
dominant topology of the bound peptides, with specific
interaction in the pTyr pocket and hydrophobic interac-
tions provided by the residues C-terminal to the pTyr
group, are unambiguously reproduced in computational
structure prediction analysis. The range of structural
deviations for the predicted peptide conformations
reveals a general trend for the Gly mutants to further
deviate from the reference conformations generated by
mutations in the crystallographic conformation of the
pYEEI peptide. While the actual interactions in the
specificity region C-terminal to the pTyr may signifi-
cantly vary from one inhibitor to the other, the struc-

tural arrangement of the ligand-SH2 domain interface
is conserved. The topology of the native binding mode
tolerant to moderate structural perturbations may be
an additional mechanism underlying permissiveness of
the SH2 domain to the peptide sequence variations in
the specificity region.

A synergy of the exhaustive sampling of the confor-
mational space and detailed evaluation of the energetics
is achieved using a hierarchy of the energy models. A
binding free energy model, which includes the MM
AMBER force field and a GB/SA solvation contribution,
has been proposed to describe the energetics of the
peptide binding. This model presents a modification of
the MM/PBSA method, where the total binding free
energy is computed by averaging the energy contribu-
tions over the conformations, structurally similar to the
predicted peptide structure. Although the binding ther-
modynamics for a panel of studied peptides is predicted
with the proposed approach in a better agreement with
the experiment than previously suggested models, the
overall correlation in binding affinity between theory
and experiment is still modest. A considerable uncer-
tainty in evaluating and interpreting the entropic
contribution of the binding free energy is also present

Figure 13. Correlation between the total computed binding free energies of the minimized mutant complexes, obtained by
introducing mutations in the crystallographic conformation of the pYEEI peptide and the experimental binding free energies (a)
and enthalpies (b). Correlation between the total computed binding free energies obtained with the hierarchical approach and
the experimental binding free energies (c) and enthalpies (d). No entropy contribution is included in the computed binding free
energies. The entropy contribution is included in the total computed binding free energies.
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in a more complete energetic model. The results of this
study indicate that predicting small differences in the
binding free energies for the Ala and Gly mutants of
the recognition pYEEI peptide is considerably more
difficult than to predict the structure of the bound
peptides. Hence, despite considerable advances in the
application of computational methods to ligand-protein
binding, accurate prediction of binding affinities still
remains a major methodological and technical challenge.
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